Bound of dissipation on a plane Couette dynamo.
نویسنده
چکیده
Variational turbulence is among the few approaches providing rigorous results in turbulence. In addition, it addresses a question of direct practical interest, namely, the rate of energy dissipation. Unfortunately, only an upper bound is obtained as a larger functional space than the space of solutions to the Navier-Stokes equations is searched. Yet, in some cases, this upper bound is in good agreement with experimental results in terms of order of magnitude and power law of the imposed Reynolds number. In this paper, the variational approach to turbulence is extended to the case of dynamo action and an upper bound is obtained for the global dissipation rate (viscous and Ohmic). A simple plane Couette flow is investigated. For low magnetic Prandtl number P_{m} fluids, the upper bound of energy dissipation is that of classical turbulence (i.e., proportional to the cubic power of the shear velocity) for magnetic Reynolds numbers below P_{m};{-1} and follows a steeper evolution for magnetic Reynolds numbers above P_{m};{-1} (i.e., proportional to the shear velocity to the power of 4) in the case of electrically insulating walls. However, the effect of wall conductance is crucial: for a given value of wall conductance, there is a value for the magnetic Reynolds number above which energy dissipation cannot be bounded. This limiting magnetic Reynolds number is inversely proportional to the square root of the conductance of the wall. Implications in terms of energy dissipation in experimental and natural dynamos are discussed.
منابع مشابه
Variational bound on energy dissipation in plane Couette flow
We present numerical solutions to the extended Doering–Constantin variational principle for upper bounds on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order to reformulate this principle’s spectral constraint, we derive a system of equations that is amenable to numerical treatment in the entire range from low to asymptotically high Reynol...
متن کاملBounds for the Threshold Amplitude for Plane Couette Flow
We prove nonlinear stability for finite amplitude perturbations of plane Couette flow. A bound of the solution of the resolvent equation in the unstable complex half-plane is used to estimate the solution of the full nonlinear problem. The result is a lower bound, including Reynolds number dependence, of the threshold amplitude below which all perturbations are stable. Our result is an improvem...
متن کاملA Taylor-Couette Dynamo
Recent experiments have shown that it is possible to study a fundamental astrophysical process such as dynamo action in controlled laboratory conditions using simple MHD flows. In this paper we explore the possibility that Taylor-Couette flow, already proposed as a model of the magneto-rotational instability of accretion discs, can sustain generation of magnetic field. Firstly, by solving the k...
متن کاملA special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملTwo Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane
Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2009